A STUDY OF THE INTERACTION BETWEEN SALINITY, RAIN AND WIND USING RIM

Maria Jacob, Linwood Jones, William Asher, Kyla Drushka, and Marcelo Scavuzzo
Motivation:

• Rain creates a fresh lens on the ocean surface
• Then AQ SSS may be fresher than HYCOM
METHODOLOGY

- Rain Accumulation based on NOAA CMORPH Rain data
 - Global coverage between ±60°lat
- Spatial integration over satellite remote sensor IFOV
 - Assumes circular footprint of 100 km
 - Uses 13 x 0.25° (AQ) boxes or 5 x 0.25° boxes (SMOS/SMAP)
 - Weighted average based on antenna beam efficiency

\[W = \text{Weighted average} \]
\[\text{Strength of signal} \]
\[W_1 > W_2 > W_3 > W_4 \]
EARTH GRIDDED SATELLITE IFOV (0.25° resolution)

NCEP WIND SPEED (0.25° resolution)

CMORPH RAIN DATA PRODUCT (0.25° resolution)

Temporal Collocations @ Time closest to AQ Observation

INSTANTANEOUS RAIN RATE (RR) @ SAT OBSERVATION TIME

RAIN RATE 24 h PREVIOUS TO SAT OBS TIME IN 0.5 h STEPS

MODEL SALINITY UNDER RAIN WITH RIM – RAIN IMPACT MODEL

HYCOM SSS DATA (0.25° res)

RIM @ 0.005 m, 1 m, 3 m & 5 m

Superposition Model for Multiple Rain Events During last 24 Hours

Salinity [psu]

T₀ minus 24 hours

Satellite observation time
Ancillary parameters:

- **BF (Rain Beam Fill Fraction)**: area weighted % of the beam with IRR > 0.25 mm/hr
 - how much it rains in each of the boxes

- **PSS (Probability of Salinity Stratification)**: normalized ΔSSS per orbit between RIM at 10 m and RIM at 0.005 m
RESULTS: RIM v1

AQUARIUS

January 10th 2012 – Orbit 5 – Beam 1

Selinity [psu]

IRR [mm/hr]

RA [mm]

SMOS

SMAP
RESULTS: STRATIFICATION ANALYSIS

- Cross correlation = 0.9148/0.91936

Graphs showing:
- Salinity [psu] vs. Latitude
- Probability of Stratification vs. Latitude
- Depth vs. SSS (psu)
RESULTS: RIM v3

- SSS (psu)
- IRR (mm/hr)
- RA (mm)
- WS (m/s)

Latitude

0 – 3 h
3 – 6 h
6 – 9 h
9 – 12 h
12 – 18 h
18 – 24 h
RESULTS: RIM v3 – cont.

- **SSS (psu)**
 - HYCOM
 - RIM
 - AQ

- **IRR (mm/hr)**
 - 0 – 3 h
 - 3 – 6 h
 - 6 – 9 h
 - 9 – 12 h
 - 12 – 18 h
 - 18 – 24 h

- **RA (mm)**
 - 0 – 3 h
 - 3 – 6 h
 - 6 – 9 h
 - 9 – 12 h
 - 12 – 18 h
 - 18 – 24 h

- **WS (m/s)**

<table>
<thead>
<tr>
<th>Latitude</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS (psu)</td>
<td>36</td>
<td>34</td>
<td>32</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>IRR (mm/hr)</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>RA (mm)</td>
<td>20</td>
</tr>
<tr>
<td>WS (m/s)</td>
<td>10</td>
</tr>
</tbody>
</table>
RAIN from SSS

- Neural Networks
 - 2 hidden layers, each with 5 neurons
 - Inputs: SSS, lat, lon, HYCOM, RIM, time
 - Outputs: RR
 - Training dataset: 1 week
 - Testing dataset: 1 day
RAIN from SSS – cont.

\[RA_{\text{reg}} = -3.70 \times \Delta S - 0.04^{++} \]

• RIM has been demonstrated to work for Aquarius, SMAP & SMOS
 • RIM for AQ available with AQ v5
 • RIM provides positive identification of the existence of a transient salinity stratification due to rain accumulation
 • RIM provides a robust quality flag for identification of salinity stratification
• Work in progress
 • Kz parametrized using GOTM model
 • Field measurements
 • SPURS 2
 • IMERG Rainfall data
RAIN ISSUES?

MEDIUM WINDS (< 10 m/s)

CAP V4

IRR

SMAP SSS

RSS V2

RR

SMAP SSS for

NCEP Wind Speed

SMAP Wind Speed

HYCOM SSS

HIGH WINDS (> 12 m/s)

CAP V4

IRR

SMAP SSS

RSS V2

RR

SMAP SSS for

NCEP Wind Speed