SAC-D/Aquarius

An Observatory for Ocean, Climate and Environment

First Results of SAC-D MWR Sea Ice Concentration Product

C. Tauro and S. Masuelli (CONAE)
H. Salgado and S. Barreira (SHN)
L. Jones (CFRSL)

7th Aquarius SAC-D Science Meeting
Buenos Aires - April 11-13, 2012
Overview

Introduction
Feasibility of determine Sea Ice Concentration from MWR
NASA Team algorithm

The MWR sea ice algorithm
The Model
Sea ice concentration function for CONAE algorithm

Prototype
Prototype steps

Validation: preliminary results
NSIDC and MWR Comparisons

Remarks
Outline

Introduction
Feasibility of determine Sea Ice Concentration from MWR
NASA Team algorithm

The MWR sea ice algorithm
The Model
Sea ice concentration function for CONAE algorithm

Prototype
Prototype steps

Validation: preliminary results
NSIDC and MWR Comparisons

Remarks
Feasibility of determine Sea Ice Concentration from MWR

Models for determine sea ice concentration and age are based on differences in the polarizing qualities of sea ice and ocean water, and greater spectral dependence of ocean water than sea ice.

Electromagnetic properties of sea ice and ocean water

Brightness temperature of MWR can identify the presence of sea ice

Outline

Introduction
 Feasibility of determine Sea Ice Concentration from MWR
 NASA Team algorithm

The MWR sea ice algorithm
 The Model
 Sea ice concentration function for CONAE algorithm

Prototype
 Prototype steps

Validation: preliminary results
 NSIDC and MWR Comparisons

Remarks
NASA Team (NT) algorithm

The algorithm was designed for deriving sea ice products from three SSM/I channels (19.4GHz H and V and the 37GHz V). It supose that the brightness temperature measured is coming from Open Water (O), First Year Sea Ice (F) and Multi Year Sea Ice (M).

\[
T_B = T_{BO}(1 - C_F - C_M) + T_{BF}(C_F) + T_{BM}(C_M)
\]

\[
PR = \frac{T_B^V(19) - T_B^H(19)}{T_B^V(19) + T_B^H(19)}
\]

\[
GR = \frac{T_B^V(37) - T_B^V(19)}{T_B^V(37) + T_B^V(19)}
\]

\[
C_i = f(GR, PR)
\]

Where PR and GR are the **Polarization and Gradient Ratios**.

[http://nsidc.org/data/docs/daac/nasateam/]
Outline

Introduction
 Feasibility of determine Sea Ice Concentration from MWR
 NASA Team algorithm

The MWR sea ice algorithm
 The Model
 Sea ice concentration function for CONAE algorithm

Prototype
 Prototype steps

Validation: preliminary results
 NSIDC and MWR Comparisons

Remarks
The MWR sea ice model

We assume that the brightness temperature received by the radiometer comes from open ocean \(T_{BO}\) with concentration \(C_O\), and from sea ice \(T_{BI}\) with concentration \(C_I\).

\[
T_B = T_{BO}C_O + T_{BI}C_I
\]

\[
1 = C_O + C_I \quad C_I = C_F + C_M
\]

Inspired in NT model, we define the next quantities using the MWR bands (23.8 GHz H, 36.5 GHz V and H):

\[
\Delta T^P = T_B^V(36.5) - T_B^H(36.5) = PR(T_B^V(36.5) + T_B^H(36.5))
\]

\[
\Delta T^G = T_B^H(36.5) - T_B^H(23.8) = GR(T_B^V(36.5) + T_B^H(36.5))
\]

Where \(\Delta T^P\) and \(\Delta T^G\) are the **Polarization and Gradient differences**.
Outline

Introduction
Feasibility of determine Sea Ice Concentration from MWR
NASA Team algorithm

The MWR sea ice algorithm
The Model
Sea ice concentration function for CONAE algorithm

Prototype
Prototype steps

Validation: preliminary results
NSIDC and MWR Comparisons

Remarks
Sea ice concentration function for CONAE algorithm

We can find the Sea Ice Concentration as a function of gradient and polarization differences, ie, $C_I = f(\Delta T^G, \Delta T^P)$:

$$ C_I = \frac{\Delta T^G - \Delta T^G_O (\Delta T^P - \Delta T^P_O) \alpha}{\Delta T^G_M - \Delta T^G_O (\Delta T^P_M - \Delta T^P_O) \alpha} $$

$$ \alpha = \frac{\Delta T^G_F - \Delta T^G_M}{\Delta T^P_F - \Delta T^P_M} $$

where:
- C_I is the ice concentration,
- ΔT^G and ΔT^P come from data measured by MWR,
- $\Delta T^G_O, \Delta T^G_P$ and ΔT^G_F are reference points that must be determined.
Outline

Introduction
Feasibility of determine Sea Ice Concentration from MWR
NASA Team algorithm

The MWR sea ice algorithm
The Model
Sea ice concentration function for CONAE algorithm

Prototype
Prototype steps

Validation: preliminary results
NSIDC and MWR Comparisons

Remarks
Prototype steps

Step 1: Brightness temperatures gradient and polarization differences calculation.

Step 2: Scatter plots construction.

Step 3: Reference points obtention.

Step 4: Sea Ice Concentration calculation.

Step 5: Sea Ice Concentration representation in a map.
Prototype: Step 2

The scatter plots are constructed separately for each beam, ascending (top) and descending passes (bottom). For example, for beams 1 to 3 we obtain:
Prototype: Step 3

<table>
<thead>
<tr>
<th>Point</th>
<th>ΔT^P (K)</th>
<th>ΔT^G (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd Open Water</td>
<td>62.73</td>
<td>12.36</td>
</tr>
<tr>
<td>Even Open Water</td>
<td>73.31</td>
<td>13.87</td>
</tr>
<tr>
<td>Odd First Year Ice</td>
<td>27.35</td>
<td>-5.66</td>
</tr>
<tr>
<td>Even First Year Ice</td>
<td>21.60</td>
<td>-4.40</td>
</tr>
<tr>
<td>Odd Multi Year Ice</td>
<td>25.04</td>
<td>-10.24</td>
</tr>
<tr>
<td>Even Multi Year Ice</td>
<td>20.51</td>
<td>-11.20</td>
</tr>
</tbody>
</table>

Points used for obtaining Open Water and Sea Ice reference points (odd beams).
Prototype: Steps 4 and 5
Outline

Introduction
 Feasibility of determine Sea Ice Concentration from MWR
 NASA Team algorithm

The MWR sea ice algorithm
 The Model
 Sea ice concentration function for CONAE algorithm

Prototype
 Prototype steps

Validation: preliminary results
 NSIDC and MWR Comparisons

Remarks
NSIDC and MWR Comparisons

We calculate the differences of both data embedded in a common grid. Here we show the results corresponding to one day (08/31/2011).

NSIDC data are provided by SHN.
Differences between MWR and NSIDC (08/31/2011)

We plot those differences in a histogram, obtaining an error of:

\[E_{IC} \approx 15\% \]
A five days MWR product

01/09/2011 al 05/09/2011

01/09/2011 al 05/09/2011
Remarks

- The presented algorithm is a self calibrated one.
- The IC error is about 15 %, in comparison with NSIDC results.
- An improved land mask, global grid and climate filters will be applied in further products.
- The validation of the Sea Ice estimation continue with colaboration of the Hidrography Naval Service of Argentina.
- The algorithm presented is implemented in CUSS and it is producing data.
- An ATBD with the details is available.
- A poster with more details is available in poster session.