Proposed Changes and Issues for V5.0
Y. Soldo, D. Le Vine, E. Dinnat, P. de Mattheis, L. Hong, J. Gales, S. El-Nimri

• Additional RFI flagging
 • Missed detection of noise-like RFI
 • Add threshold flag (e.g. Tf > 340 K)

• Land Emissivity Model
 • Used to compute Ta_exp
 • Updates to be consistent with Aquarius soil moisture products and SMAP

• Beam2
 • SSS inter-beam differences
 • Faraday rotation angle
RFI flagging

- Some missed detections due to noise-like RFI
- Add RFI flag based on fixed thresholds
- Effective only over land; flag only; no data removed
Proposed Changes to Land Emissivity Model: 1/4

• Adopt SMAP model (non-frozen soil: T >0)
 – Mironov model for dielectric constant
 – SMAP ancillary data
 • Vegetation opacity (as implemented by USDA for Aquarius SM)
 • Land cover classification (as implemented by USDA for Aquarius SM)
 • Maps of sand/clay fractions & soil density
 • Roughness parameter
 • Single-scattering albedo
 • Land Surface Temperature (GEOS-5)
 • Soil Moisture (GEOS-5)
Proposed Changes to Land Emissivity Model: 2/4

• Frozen fraction (transition frozen/non-frozen)
 – Use the map of LST to determine how much of the land fraction is frozen
 – Use frozen fraction like the land/sea ice/water fractions

• Emissivity of frozen soil (T < 0)
 – Use averages of emissivity derived from Aquarius data
 – 1 deg resolution cells
Proposed Changes to Land Emissivity Model: 3/4

- Faraday angle
 - Use model (IGS) to compute Faraday over land

- Fill missing soil moisture near coasts
 - Average of nearest neighbors
Proposed Changes to Land Emissivity Model: 4/4

• Weighted/Non-weighted fractions
 – Currently use non-weighted fractions for Ta_{exp}
 – Changes global average of $Ta_{expected}$ in the open ocean
 – Evaluation
Beam2: Inter-Beam Differences (V3)

- Looked for Correlation
 - Significant correlation with Faraday rotation

- Beam 2 an Issue
 - Compare differences in SSS
 - Beam 2 stands out
 - $B2 - B1 \neq 0$; $B2 - B3 \neq 0$
 - $B1 - B3 \approx 0$
Beam2: Faraday rotation angle [L. Hong]
Beam2: TEC (V3) [from E. Dinnat]
Bonus
<table>
<thead>
<tr>
<th>Weekly average of Ta_expected</th>
<th>Non-weigh.</th>
<th>Weigh.</th>
<th>Δ [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V</td>
<td>106.8037</td>
<td>106.8063</td>
<td>0.00263</td>
</tr>
<tr>
<td>1H</td>
<td>88.5583</td>
<td>88.5609</td>
<td>0.00261</td>
</tr>
<tr>
<td>2V</td>
<td>115.248</td>
<td>115.2506</td>
<td>0.00257</td>
</tr>
<tr>
<td>2H</td>
<td>82.5689</td>
<td>82.5715</td>
<td>0.00256</td>
</tr>
<tr>
<td>3V</td>
<td>125.9472</td>
<td>125.9498</td>
<td>0.00254</td>
</tr>
<tr>
<td>3H</td>
<td>75.8661</td>
<td>75.8686</td>
<td>0.00257</td>
</tr>
</tbody>
</table>