Aquarius Warm End Calibration

Rajat Bindlish, Thomas Jackson, Tianjie Zhao, Gary Lagerloef, David Le Vine

January 29, 2013
Overview

• Introduction
• Objectives
• Methodology
• Comparison results for areas with concurrent observations
• Vicarious targets
Introduction

• Verifying the calibration of the Aquarius data over the entire dynamic range is necessary.
• Land brightness temperatures over land fall in a completely different range of response and it is prudent to verify that the primary calibration extends to these levels.
• It is a challenge to validate TB over land using models because there are more factors that contribute to TB and the footprints are more heterogeneous than the oceans.
Approach

• Use SMOS as a tool in assessing the calibration of the Aquarius radiometer over land
• On orbit inter-comparison of two L-band radiometers
• Need for consistent observations:
 – Aquarius and SMOS provide an opportunity to check each others calibration
 – Critical to develop a long-term climatic data record of L-band brightness temperature observations
 – A physical algorithm for development of a long term environmental data record that spans multiple L-band missions requires consistent input observations
SMOS

- Passive microwave L-band 2D-synthetic aperture
 - Multiple incidence angles at every location along the swath
- Sun Synchronous orbit with an ascending orbit of 6:00 AM
- Spatial resolution 40 km
- Swath – 1400 km
- 3 day global coverage
Methodology

• Approach: Use SMOS as a tool in assessing the calibration of the Aquarius radiometer over land (under the assumption that SMOS is a well calibrated L-band radiometer)

• Concurrent observations in both time (within 30 min → eliminates effect of change in physical temperature) and space (same location)

• Aquarius and SMOS inter-comparison notes
 – Aquarius evaluation Version 1.3.7
 – Land and ocean
 – Concurrent SMOS and Aquarius observations within 30 min
 – Same incidence angle (after re-processing SMOS data)
 – Only alias free portions of SMOS observations
 – Multiple SMOS DGG locations within a single Aquarius footprint
 – Min number of SMOS observations per Aquarius footprint required– 20 (to minimize partial Aquarius footprint coverage)
 – Std. Dev. of SMOS data averaged < 5 K (land) and 1 K (ocean) (to minimize footprint variability; also results in screening RFI)
 – Differences in azimuth angle and orientation of the footprints ignored
Comparison between Aquarius and SMOS
Comparison between Aquarius and SMOS over Land

Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>RMSD (K)</th>
<th>R</th>
<th>Bias [Aq-SMOS] (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H pol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner (29.36°)</td>
<td>8.47</td>
<td>0.9697</td>
<td>8.16</td>
</tr>
<tr>
<td>Middle (38.49°)</td>
<td>8.50</td>
<td>0.9851</td>
<td>8.32</td>
</tr>
<tr>
<td>Outer (46.29°)</td>
<td>8.10</td>
<td>0.9787</td>
<td>7.76</td>
</tr>
<tr>
<td>V pol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner (29.36°)</td>
<td>6.03</td>
<td>0.9906</td>
<td>5.89</td>
</tr>
<tr>
<td>Middle (38.49°)</td>
<td>7.27</td>
<td>0.9848</td>
<td>7.04</td>
</tr>
<tr>
<td>Outer (46.29°)</td>
<td>6.68</td>
<td>0.9853</td>
<td>6.38</td>
</tr>
</tbody>
</table>
Comparison between Aquarius and SMOS over Ocean
Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>RMSD (K)</th>
<th>R</th>
<th>Bias [Aq-SMOS] (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H pol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner (29.36°)</td>
<td>1.10</td>
<td>0.5600</td>
<td>0.57</td>
</tr>
<tr>
<td>Middle (38.49°)</td>
<td>1.64</td>
<td>0.4830</td>
<td>1.06</td>
</tr>
<tr>
<td>Outer (46.29°)</td>
<td>1.22</td>
<td>0.7480</td>
<td>0.93</td>
</tr>
<tr>
<td>V pol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner (29.36°)</td>
<td>2.49</td>
<td>0.5873</td>
<td>2.33</td>
</tr>
<tr>
<td>Middle (38.49°)</td>
<td>1.62</td>
<td>0.6225</td>
<td>1.36</td>
</tr>
<tr>
<td>Outer (46.29°)</td>
<td>0.79</td>
<td>0.6988</td>
<td>-0.18</td>
</tr>
</tbody>
</table>
Comparison between Aquarius and SMOS

• Intercomparison results:
 – SMOS and Aquarius compare well over oceans
 – Very high correlation between SMOS and Aquarius observations
 – Systematic difference in gain and offset for all channels
 – H-pol bias greater than V-pol bias for all beams
 – Expecting improvements in future versions

• Scatter possibly due to:
 – RFI (possible RFI in SMOS/Aquarius)
 – Heterogeneous footprint
 – Different azimuth angles
 – Noise in SMOS data
Vicarious Calibration Targets

- **Amazon**
 - Hot target

- **Dome-C**
 - Stable cold target in Antarctica
 - ESA has done extensive studies over this location.
 - Multi-year field experiment with a ground based radiometer (RADOMEX)
- Surface temperature effects eliminated by the use of land surface emissivity (NCEP surface temperature)
- Very little difference in Asc and Dsc observations over Amazon
- H and V pol observations are similar
- TB and emissivity does not change with incidence angle for both h- and v-pol
- Variability – Aquarius has higher stability (lower St. Dev.)
- Consistent difference between Aquarius and SMOS observations

Amazon
Vicarious Targets

• Amazon
 – Hot target

• Dome-C
 – Stable cold target in Antarctica
 • ESA has done extensive studies over this location.
 • Multi-year field experiment with a ground based radiometer (RADOMEX)
- Very little difference in Asc and Dsc observations over Dome-C
- Variability – Aquarius has higher stability (lower St. Dev.)
- V pol observations higher than h pol for both satellites
- TB increases with incidence angle for v-pol and vice versa for h-pol
- Bias between Aquarius and SMOS observations
Multi-platform Dome-C observations

Comparison between Aquarius and SMOS over Dome C (Asc)

Comparison between Aquarius and SMOS over Dome C (Dsc)

Aquarius (h-pol) Aquarius (v-pol) SMOS (h-pol) SMOS (v-pol)
Summary

• Aquarius observations compare well with SMOS observations over oceans

• Scatter due to:
 – RFI (possible RFI in SMOS/Aquarius)
 – Heterogeneous footprint
 – Different azimuth angles
 – Noise in SMOS observations

• Aquarius observations very stable over Dome-C

• Very little variability in Aquarius observations over Dome-C

• SMOS observations lower than Aquarius observations for all channels over land