Cold Sky Calibration (CSC)

Adam Freedman
• Cold sky calibration signature in incidence angle
• Need noise-only (L1B) signature of cold-sky cal
• Mysterious bump in scatterometer off-Earth view, beam 3 only
• Not seen in radiometer brightness temperature
• Seen in scat noise-only channel also
• Probably first range ambiguity off edge of Earth
 - need to verify ranges, times, angles
 - however, bump appears off Earth, while pointed to sky
• Other ideas?
COLD SKY CALIBRATION
MARCH 24, 2012
- First half of CSC maneuver (up to about 03:03) clear of RFI
- Second half of CSC dense with RFI in scat
- Beam 3 “bump” in middle of CSC at about 03:00±00:01
- This bump coincidentally corresponds to pitch “overshoot” of 180°?
• Bump at 03:00 seen in both noise only and echo, beam 3 only
• “Edge of Earth” range ambiguity in H-pol likely
• First half of 180° pitch (02:58 – 03:02) looks clean of RFI
• RFI pretty messy from 03:04 on
Orbit position at 02:58: mid-Pacific, no land in view.

Orbit position at 03:00: mid-Pacific, no land in view, but Hawaii just coming into view over horizon.
Orbit position at 03:02: Hawaii in view

Orbit position at 03:04: North America (Baja, CA) just coming into view over horizon
Orbit position at 03:06: West coast of U.S. in view over horizon
• Similar information as in averaged echo
• Small mini-bump at about 02:54, maybe in beam 1 only
• Closeups of scat echo channels
- Radiometer looks very flat for most of CSC
- No bumps
- RFI only appears at very end of maneuver
What are the scatterometer CSC “bumps”

• Not likely to be range ambiguity signature
• Is beam 3 only coincidence, or defining?
• Source of L band at or near 1260 MHz in space?
 – GPS or other satellite positioning system?
• Other ideas?
Information from Bryan Huneycutt

• Aquarius should see emissions in the 1258-1262 MHz band from the following RNSS systems: the 27 Glonass MEOs, 27 Compass MEOs & 5 Compass GEOs & 3 IGSOs, 30 Galileo MEOs, and 1 Arabsat GEO. When Aerospace modeled all of these RNSS systems, the peak RFI received into the SMAP backlobes and sidelobes was calculated to be -143 dBW for Glonass, -151 dBW for Compass, -142 dBW for Galileo, and -139 dBW for Arabsat. Aquarius would be in line-of-sight typically with more than half of each system constellation.

• In 2010 there were 23 Glonass MEOs, 0 Galileo MEOs, and 5 Compass MEOs/GEOs/IGSOs. I’m not sure how many there are now, but by 2013 there are expected to be 24 Glonass MEOs, 24 Galileo MEOs, and 12 Compass MEOs/GEOs/IGSOs.
GNSS

<table>
<thead>
<tr>
<th>System</th>
<th>Develop/Operation</th>
<th>Satellite Orbit</th>
<th>G/R</th>
<th>Signals</th>
<th>Satellite Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>US</td>
<td>MEO</td>
<td>G</td>
<td>L1, L2, L5</td>
<td>CDMA</td>
</tr>
<tr>
<td>GLONASS</td>
<td>Russia</td>
<td>MEO</td>
<td>G</td>
<td>L1, L2, (L3)</td>
<td>FDMA (CDMA)</td>
</tr>
<tr>
<td>Galileo</td>
<td>EU</td>
<td>MEO</td>
<td>G</td>
<td>E1, E5, E6</td>
<td>CDMA</td>
</tr>
<tr>
<td>Compass</td>
<td>China</td>
<td>MEO + GEO + IGSO</td>
<td>G</td>
<td>B1, B2, B3, L5</td>
<td>CDMA</td>
</tr>
<tr>
<td>QZSS</td>
<td>Japan</td>
<td>IGSO</td>
<td>R</td>
<td>L1, L2, L5, LEX</td>
<td>CDMA</td>
</tr>
<tr>
<td>IRNSS</td>
<td>India</td>
<td>GEO + IGSO</td>
<td>R</td>
<td>L5, S</td>
<td>CDMA</td>
</tr>
<tr>
<td>SBAS</td>
<td>US, ...</td>
<td>GEO</td>
<td>R</td>
<td>L1, (L5)</td>
<td>CDMA</td>
</tr>
</tbody>
</table>

Satellite Constellation

<table>
<thead>
<tr>
<th>System</th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>31 (+1)</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>GLONASS</td>
<td>23 (+3)</td>
<td>24 (+3)</td>
<td>24 (+3)</td>
<td>24 (+3)</td>
</tr>
<tr>
<td>Galileo</td>
<td>0</td>
<td>12</td>
<td>27 (+3)</td>
<td>27 (+3)</td>
</tr>
<tr>
<td>Compass</td>
<td>5</td>
<td>12</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>QZSS</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IRNSS</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>SBAS</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>101</td>
<td>134</td>
<td>139</td>
</tr>
</tbody>
</table>

GNSS Systems and Satellite Constellations

- L2
- E6/LEX