SMAP data reveal critical effect of Maritime Continent (MC) water cycle on tropical chokepoint of global ocean circulation

SMAP salinity during NW monsoon (DJF/MAM)

S-to-N distribution of salinity & sea level anomaly along the main ITF channel (black rectangular above)

Problem: The Indonesian throughflow (ITF) is the tropical chokepoint of global ocean circulation, affecting ocean heat/freshwater distribution, sea level, marine BGC, and climate variability. Monsoonal water cycle causes ~3 m of rain in the MC (DJF to MAM). But its effect on the ITF is poorly understood.

Main Datasets: SMAP salinity & soil moisture; TRMM/GMP precipitation; Jason-2/3 sea level anomaly & surface currents; MODIS ocean color.

Key findings:

- Monsoonal rain & rain-induced runoff dilute seawaters in the main channel of the ITF.
- This raises local sea level, opposing pressure from the Pacific that drives the ITF.
- Seasonal freshening explains seasonal change of sea level gradient along the ITF pathway, exemplifying monsoon-rain effect on the ITF.
- SMAP & other NASA satellites are fundamental to enabling the insight.

Implications:

- The MC is under the ascending (wet) branch of the atmospheric "Walker Circulation", which is projected to weaken under climate change scenario.
- Changes in the Walker Circulation affects MC precipitation its effects on the ITF and phenomena affected by the ITF need to be investigated.

Lee, T., S. Fournier, A. L. Gordon, J. Sprintall, 2019: Maritime continent water cycle regulates lowlatitude chokepoint of global ocean circulation. *Nature Comm.*, DOI:10.1038/s41467-019-10109-z.

© 2019 California Institute of Technology. Government sponsorship acknowledged